Serveur d'exploration sur le peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

New evidence for a multi-functional role of herbivore-induced plant volatiles in defense against herbivores.

Identifieur interne : 003185 ( Main/Exploration ); précédent : 003184; suivant : 003186

New evidence for a multi-functional role of herbivore-induced plant volatiles in defense against herbivores.

Auteurs : Cesar R. Rodriguez-Saona [États-Unis] ; Christopher J. Frost

Source :

RBID : pubmed:20592811

Descripteurs français

English descriptors

Abstract

A diverse, often species-specific, array of herbivore-induced plant volatiles (HIPVs) are commonly emitted from plants after herbivore attack. Although research in the last 3 decades indicates a multi-functional role of these HIPVs, the evolutionary rationale underpinning HIPV emissions remains an open question. Many studies have documented that HIPVs can attract natural enemies, and some studies indicate that neighboring plants may eavesdrop their undamaged neighbors and induce or prime their own defenses prior to herbivore attack. Both of these ecological roles for HIPVs are risky strategies for the emitting plant. In a recent paper, we reported that most branches within a blueberry bush share limited vascular connectivity, which restricts the systemic movement of internal signals. Blueberry branches circumvent this limitation by responding to HIPVs emitted from neighboring branches of the same plant: exposure to HIPVs increases levels of defensive signaling hormones, changes their defensive status, and makes undamaged branches more resistant to herbivores. Similar findings have been reported recently for sagebrush, poplar and lima beans, where intra-plant communication played a role in activating or priming defenses against herbivores. Thus, there is increasing evidence that intra-plant communication occurs in a wide range of taxonomically unrelated plant species. While the degree to which this phenomenon increases a plant's fitness remains to be determined in most cases, we here argue that within-plant signaling provides more adaptive benefit for HIPV emissions than does between-plant signaling or attraction of predators. That is, the emission of HIPVs might have evolved primarily to protect undamaged parts of the plant against potential enemies, and neighboring plants and predators of herbivores later co-opted such HIPV signals for their own benefit.

DOI: 10.4161/psb.5.1.10160
PubMed: 20592811
PubMed Central: PMC2835960


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">New evidence for a multi-functional role of herbivore-induced plant volatiles in defense against herbivores.</title>
<author>
<name sortKey="Rodriguez Saona, Cesar R" sort="Rodriguez Saona, Cesar R" uniqKey="Rodriguez Saona C" first="Cesar R" last="Rodriguez-Saona">Cesar R. Rodriguez-Saona</name>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Entomology, Rutgers University, Chatsworth, NJ, USA. crodriguez@aesop.rutgers.edu</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Entomology, Rutgers University, Chatsworth, NJ</wicri:regionArea>
<placeName>
<region type="state">New Jersey</region>
<settlement type="city">New Brunswick (New Jersey)</settlement>
</placeName>
<orgName type="university">Université Rutgers</orgName>
</affiliation>
</author>
<author>
<name sortKey="Frost, Christopher J" sort="Frost, Christopher J" uniqKey="Frost C" first="Christopher J" last="Frost">Christopher J. Frost</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2010">2010</date>
<idno type="RBID">pubmed:20592811</idno>
<idno type="pmid">20592811</idno>
<idno type="pmc">PMC2835960</idno>
<idno type="doi">10.4161/psb.5.1.10160</idno>
<idno type="wicri:Area/Main/Corpus">003140</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">003140</idno>
<idno type="wicri:Area/Main/Curation">003140</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">003140</idno>
<idno type="wicri:Area/Main/Exploration">003140</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">New evidence for a multi-functional role of herbivore-induced plant volatiles in defense against herbivores.</title>
<author>
<name sortKey="Rodriguez Saona, Cesar R" sort="Rodriguez Saona, Cesar R" uniqKey="Rodriguez Saona C" first="Cesar R" last="Rodriguez-Saona">Cesar R. Rodriguez-Saona</name>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Entomology, Rutgers University, Chatsworth, NJ, USA. crodriguez@aesop.rutgers.edu</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Entomology, Rutgers University, Chatsworth, NJ</wicri:regionArea>
<placeName>
<region type="state">New Jersey</region>
<settlement type="city">New Brunswick (New Jersey)</settlement>
</placeName>
<orgName type="university">Université Rutgers</orgName>
</affiliation>
</author>
<author>
<name sortKey="Frost, Christopher J" sort="Frost, Christopher J" uniqKey="Frost C" first="Christopher J" last="Frost">Christopher J. Frost</name>
</author>
</analytic>
<series>
<title level="j">Plant signaling & behavior</title>
<idno type="eISSN">1559-2324</idno>
<imprint>
<date when="2010" type="published">2010</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Animals (MeSH)</term>
<term>Biological Evolution (MeSH)</term>
<term>Immunity, Innate (MeSH)</term>
<term>Insecta (MeSH)</term>
<term>Plant Diseases (MeSH)</term>
<term>Plant Stems (metabolism)</term>
<term>Plants (metabolism)</term>
<term>Predatory Behavior (MeSH)</term>
<term>Signal Transduction (MeSH)</term>
<term>Volatile Organic Compounds (metabolism)</term>
<term>Volatile Organic Compounds (toxicity)</term>
<term>Volatilization (MeSH)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Animaux (MeSH)</term>
<term>Comportement prédateur (MeSH)</term>
<term>Composés organiques volatils (métabolisme)</term>
<term>Composés organiques volatils (toxicité)</term>
<term>Immunité innée (MeSH)</term>
<term>Insectes (MeSH)</term>
<term>Maladies des plantes (MeSH)</term>
<term>Plantes (métabolisme)</term>
<term>Tiges de plante (métabolisme)</term>
<term>Transduction du signal (MeSH)</term>
<term>Volatilisation (MeSH)</term>
<term>Évolution biologique (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Volatile Organic Compounds</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Plant Stems</term>
<term>Plants</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Composés organiques volatils</term>
<term>Plantes</term>
<term>Tiges de plante</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="toxicity" xml:lang="en">
<term>Volatile Organic Compounds</term>
</keywords>
<keywords scheme="MESH" qualifier="toxicité" xml:lang="fr">
<term>Composés organiques volatils</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Animals</term>
<term>Biological Evolution</term>
<term>Immunity, Innate</term>
<term>Insecta</term>
<term>Plant Diseases</term>
<term>Predatory Behavior</term>
<term>Signal Transduction</term>
<term>Volatilization</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Animaux</term>
<term>Comportement prédateur</term>
<term>Immunité innée</term>
<term>Insectes</term>
<term>Maladies des plantes</term>
<term>Transduction du signal</term>
<term>Volatilisation</term>
<term>Évolution biologique</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">A diverse, often species-specific, array of herbivore-induced plant volatiles (HIPVs) are commonly emitted from plants after herbivore attack. Although research in the last 3 decades indicates a multi-functional role of these HIPVs, the evolutionary rationale underpinning HIPV emissions remains an open question. Many studies have documented that HIPVs can attract natural enemies, and some studies indicate that neighboring plants may eavesdrop their undamaged neighbors and induce or prime their own defenses prior to herbivore attack. Both of these ecological roles for HIPVs are risky strategies for the emitting plant. In a recent paper, we reported that most branches within a blueberry bush share limited vascular connectivity, which restricts the systemic movement of internal signals. Blueberry branches circumvent this limitation by responding to HIPVs emitted from neighboring branches of the same plant: exposure to HIPVs increases levels of defensive signaling hormones, changes their defensive status, and makes undamaged branches more resistant to herbivores. Similar findings have been reported recently for sagebrush, poplar and lima beans, where intra-plant communication played a role in activating or priming defenses against herbivores. Thus, there is increasing evidence that intra-plant communication occurs in a wide range of taxonomically unrelated plant species. While the degree to which this phenomenon increases a plant's fitness remains to be determined in most cases, we here argue that within-plant signaling provides more adaptive benefit for HIPV emissions than does between-plant signaling or attraction of predators. That is, the emission of HIPVs might have evolved primarily to protect undamaged parts of the plant against potential enemies, and neighboring plants and predators of herbivores later co-opted such HIPV signals for their own benefit.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">20592811</PMID>
<DateCompleted>
<Year>2011</Year>
<Month>03</Month>
<Day>01</Day>
</DateCompleted>
<DateRevised>
<Year>2019</Year>
<Month>05</Month>
<Day>16</Day>
</DateRevised>
<Article PubModel="Print">
<Journal>
<ISSN IssnType="Electronic">1559-2324</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>5</Volume>
<Issue>1</Issue>
<PubDate>
<Year>2010</Year>
<Month>Jan</Month>
</PubDate>
</JournalIssue>
<Title>Plant signaling & behavior</Title>
<ISOAbbreviation>Plant Signal Behav</ISOAbbreviation>
</Journal>
<ArticleTitle>New evidence for a multi-functional role of herbivore-induced plant volatiles in defense against herbivores.</ArticleTitle>
<Pagination>
<MedlinePgn>58-60</MedlinePgn>
</Pagination>
<Abstract>
<AbstractText>A diverse, often species-specific, array of herbivore-induced plant volatiles (HIPVs) are commonly emitted from plants after herbivore attack. Although research in the last 3 decades indicates a multi-functional role of these HIPVs, the evolutionary rationale underpinning HIPV emissions remains an open question. Many studies have documented that HIPVs can attract natural enemies, and some studies indicate that neighboring plants may eavesdrop their undamaged neighbors and induce or prime their own defenses prior to herbivore attack. Both of these ecological roles for HIPVs are risky strategies for the emitting plant. In a recent paper, we reported that most branches within a blueberry bush share limited vascular connectivity, which restricts the systemic movement of internal signals. Blueberry branches circumvent this limitation by responding to HIPVs emitted from neighboring branches of the same plant: exposure to HIPVs increases levels of defensive signaling hormones, changes their defensive status, and makes undamaged branches more resistant to herbivores. Similar findings have been reported recently for sagebrush, poplar and lima beans, where intra-plant communication played a role in activating or priming defenses against herbivores. Thus, there is increasing evidence that intra-plant communication occurs in a wide range of taxonomically unrelated plant species. While the degree to which this phenomenon increases a plant's fitness remains to be determined in most cases, we here argue that within-plant signaling provides more adaptive benefit for HIPV emissions than does between-plant signaling or attraction of predators. That is, the emission of HIPVs might have evolved primarily to protect undamaged parts of the plant against potential enemies, and neighboring plants and predators of herbivores later co-opted such HIPV signals for their own benefit.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Rodriguez-Saona</LastName>
<ForeName>Cesar R</ForeName>
<Initials>CR</Initials>
<AffiliationInfo>
<Affiliation>Department of Entomology, Rutgers University, Chatsworth, NJ, USA. crodriguez@aesop.rutgers.edu</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Frost</LastName>
<ForeName>Christopher J</ForeName>
<Initials>CJ</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D016420">Comment</PublicationType>
</PublicationTypeList>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Plant Signal Behav</MedlineTA>
<NlmUniqueID>101291431</NlmUniqueID>
<ISSNLinking>1559-2316</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D055549">Volatile Organic Compounds</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<CommentsCorrectionsList>
<CommentsCorrections RefType="CommentOn">
<RefSource>J Chem Ecol. 2009 Feb;35(2):163-75</RefSource>
<PMID Version="1">19159981</PMID>
</CommentsCorrections>
</CommentsCorrectionsList>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000818" MajorTopicYN="N">Animals</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005075" MajorTopicYN="N">Biological Evolution</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D007113" MajorTopicYN="N">Immunity, Innate</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D007313" MajorTopicYN="Y">Insecta</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010935" MajorTopicYN="Y">Plant Diseases</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018547" MajorTopicYN="N">Plant Stems</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010944" MajorTopicYN="N">Plants</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011235" MajorTopicYN="Y">Predatory Behavior</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015398" MajorTopicYN="N">Signal Transduction</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D055549" MajorTopicYN="N">Volatile Organic Compounds</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
<QualifierName UI="Q000633" MajorTopicYN="N">toxicity</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014835" MajorTopicYN="N">Volatilization</DescriptorName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">eavesdropping</Keyword>
<Keyword MajorTopicYN="N">intra-plant signaling</Keyword>
<Keyword MajorTopicYN="N">plant defense</Keyword>
<Keyword MajorTopicYN="N">plantplant communication</Keyword>
<Keyword MajorTopicYN="N">systemic wound signals</Keyword>
<Keyword MajorTopicYN="N">tri-trophic interactions</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2009</Year>
<Month>09</Month>
<Day>22</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2009</Year>
<Month>09</Month>
<Day>22</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2010</Year>
<Month>7</Month>
<Day>2</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2010</Year>
<Month>7</Month>
<Day>2</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2011</Year>
<Month>3</Month>
<Day>2</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">20592811</ArticleId>
<ArticleId IdType="pmc">PMC2835960</ArticleId>
<ArticleId IdType="pii">10160</ArticleId>
<ArticleId IdType="doi">10.4161/psb.5.1.10160</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Science. 2001 Mar 16;291(5511):2141-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11251117</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2001 Mar 29;410(6828):577-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11279494</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2001 Jun 14;411(6839):854-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11459069</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1994 Dec 6;91(25):11836-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11607499</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Chem Ecol. 2004 Jul;30(7):1305-17</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15503521</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Chem Ecol. 2004 Nov;30(11):2215-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15672666</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Photosynth Res. 2005 Aug;85(2):149-59</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16075316</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Chem Ecol. 2005 Oct;31(10):2231-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16195841</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ecology. 2006 Apr;87(4):922-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16676536</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Ecol Evol. 2004 Aug;19(8):402-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16701293</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2007 Mar 27;104(13):5467-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17360371</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ecol Lett. 2007 Jun;10(6):490-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17498148</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ecol Lett. 2007 Sep;10(9):791-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17663712</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 1983 Jul 15;221(4607):277-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17815197</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 1990 Nov 30;250(4985):1251-3</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17829213</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ecol Lett. 2008 Jul;11(7):727-39</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18400016</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2008;180(3):722-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18721163</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Environ. 2009 Jun;32(6):654-65</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19021885</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Chem Ecol. 2009 Feb;35(2):163-75</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19159981</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ecol Lett. 2009 Jun;12(6):502-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19392712</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Oecologia. 2000 Oct;125(1):66-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28308223</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
<region>
<li>New Jersey</li>
</region>
<settlement>
<li>New Brunswick (New Jersey)</li>
</settlement>
<orgName>
<li>Université Rutgers</li>
</orgName>
</list>
<tree>
<noCountry>
<name sortKey="Frost, Christopher J" sort="Frost, Christopher J" uniqKey="Frost C" first="Christopher J" last="Frost">Christopher J. Frost</name>
</noCountry>
<country name="États-Unis">
<region name="New Jersey">
<name sortKey="Rodriguez Saona, Cesar R" sort="Rodriguez Saona, Cesar R" uniqKey="Rodriguez Saona C" first="Cesar R" last="Rodriguez-Saona">Cesar R. Rodriguez-Saona</name>
</region>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 003185 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 003185 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:20592811
   |texte=   New evidence for a multi-functional role of herbivore-induced plant volatiles in defense against herbivores.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:20592811" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 12:07:19 2020. Site generation: Wed Nov 18 12:16:31 2020